In Vitro and in Vivo Antiviral Activity of S-892216, a Second Generation Oral 3CL^{pro} Inhibitor against SARS-CoV-2

Haruaki Nobori¹, Sho Kawashima¹, Reiko Dodo¹, Yuki Maruyama¹, Takayo Haruna¹, Keiichiro Hirai¹, Yuto Unoh¹, Kenji Nakahara¹, Shota Uehara¹, Ryosuke Watari¹, Tomoyuki Kawachi¹, Yuka Natsume¹, Katsumoto Hata¹, Yukiko Orita¹, Kae Fujisawa¹, Tetsuya Miyano¹, Hideko Kaneda², Taeko Kawai², Kae Inoue², Akane Hayashi², Takashi Hashimoto², Kazumi Matsumoto², Kaoru Baba², Taichi Ueda¹, Takafumi Sato¹, Teruhisa Kato¹, Keita Fukao¹ 1 Shionogi & Co., Ltd., Osaka, Japan

2 Shionogi TechnoAdvance Research, Co., Ltd., Osaka, Japan

Background and Purpose

COVID-19 caused by SARS-CoV-2 remains a global public health concern. Although oral direct-acting antivirals for COVID-19 (such as molnupiravir, nirmatrelvir/ritonavir, ensitrelvir [approved in Japan and Singapore]) were approved for clinical use, there are concerns about drug-drug interactions (DDI) and patient eligibility, so development of new therapeutics is needed. In this study, we describe enzyme inhibitory and antiviral activity of S-892216, a second generation small molecular 3C-like protease (3CL^{pro}) inhibitor.

Methods

The 3CL^{pro} enzymatic assay was conducted by mass spectrometry system. In vitro antiviral activity was evaluated using VeroE6/TMPRSS2 cells and human airway epithelial cells (hAEC) following infection with several SARS-CoV-2 variants. In vivo efficacy was evaluated using Balb/c mice, intranasally infected with SARS-CoV-2, and S-892216 was orally administered.

Results

S-892216 showed high 3CL^{pro} inhibitory activity $(IC_{50} = 0.655 \text{ nmol/L})$ and exhibited *in vitro* antiviral activity against several SARS-CoV-2 strains, including Omicron variants ($EC_{50} = 2.27$ -12.5 nmol/L in VeroE6/TMPRSS2 cells, $EC_{90} =$ 2.31-2.41 nmol/L in hAECs). Furthermore, S-892216 suppressed lung virus titer in Balb/c mice infected with SARS-CoV-2 in a dosedependent manner.

Table 1 3CL^{pro} inhibitory activity

	IC ₅₀ (nmol/L)					
	S-892216	Ensitrelvir	Nirmatrelvir			
wild-type	0.655 ± 0.062	14.3 ± 1.3	13.3 ± 0.3			
P132H	0.767 ± 0.041	16.5 ± 1.1	11.6 ± 1.1			

HIV protease

Hurr

EC₅₀ (nmol/L) SARS-CoV-2 S-892216 Ensitrelvir Remdesivir 8.77 ± 1.92 1910 ± 140 345 ± 102 Α 3.85 ± 1.41 316 ± 38 2140 ± 390 **P.1** 1.617.2 1550 ± 220 4.91 ± 1.29 338 ± 46 1010 ± 50 A.1.1 2.63 ± 0.18 136 ± 16 495 ± 198 .2.12.1 2.27 ± 0.26 198 ± 75 BA.5-like) 6.54 ± 3.49 1250 ± 540 259 ± 66 5.1.5.19 7.40 ± 1.08 570 ± 74 1040 ± 180 3020 ± 310 986 ± 111 B.1.9.1 12.5 ± 0.9

Ancestral	
Gamma	
Delta	B.1
Omicron	BA
	BA.
	BE.1 (E
	XBB
	XBE

COI disclosure: Authors are employees of Shionogi & Co., Ltd. or Shionogi TechnoAdvance Research, Co., Ltd. Some authors are shareholder of Shionogi & Co., Ltd.

Mean \pm SD (n=3)

Table 2 Selectivity of S-892216 against mammalian and

Protease	IC ₅₀ (nmol/L)			
Human Caspase 2	>10,000			
uman Chymotrypsin	>10,000			
nan Cathepsin B/D/G/L	>10,000			
Human Thrombin	>10,000			
HIV-1 Protease	>10,000			

Table 3 Anti-SARS-CoV-2 activity against various variants in VeroE6/TMPRSS2 cells

Table 4 Anti-SARS-CoV-2 activity in various cells

VeroE6/T

VeroE6/TI

with P-gp

A549/ACE2-

Human airway ep MucilA

Virus infection

Ð.

SARS-CoV-2 Gamma 1×10^4 TCID₅₀/mouse

 $Mean \pm SD(n=3)$

Cells	SARS-CoV-2			S-892216	Ensitrelvir	Nirmatrelvir	Remdesivir	NHC ^{*2}
MPRSS2 cell	Ancestral	Α	EC ₅₀ (nmol/L)	8.77 ± 1.92	345 ± 102	4880 ± 2030	1910 ± 140	360 ± 49 ^{*3}
MPRSS2 cell o inhibitor ^{*1}	Ancestral	Α	EC ₅₀ (nmol/L)	3.36 ± 0.42	94.9 ± 38.6	68.1 ± 16.2	56.5 ± 15.0	677 ± 9 ^{*3}
-TMPRSS2 cell	Delta	B.1.617.2	EC ₅₀ (nmol/L)	2.21 ± 0.63	73.1 ± 16.4	47.5 ± 12.3	51.7 ± 22.4	2300 ± 330
oithelial cells (hAEC) Air™ nasal	Omicron	BE.1 (BA.5-like) XBB.1.5.19	EC ₉₀ (nmol/L)	2.41 ± 1.61 2.31 ± 1.28	60.1 ± 32.8 78.4 ± 36.1	45.1 ± 21.2 75.2 ± 20.1	21.1 ± 9.0 ^{*4}	3660 ± 920 ^{*4}
					Mean \pm SD (n=3)	*1 0.75 μmol/L CP-	100356	

Contact

Figure 1 In vivo efficacy of S-892216 in a mouse infected model

(b) Antiviral activity on lung virus titer

Haruaki Nobori, PhD 3-1-1, Futabacho, Toyonaka, Osaka, 561-0825, Japan TEL: +81-70-7812-7375 E-mail: haruaki.nobori@shionogi.co.jp

Conclusions

S-892216 has stronger 3CL^{pro} inhibitory and antiviral activity than approved 3CL^{pro} inhibitors and has been confirmed to be effective in vivo without the need of a pharmacoenhancer. Due to the strong antiviral activity of S-892216, it is suggested to be effective at low doses in clinical settings. DDI and safety will be evaluated in clinical trials.

*3 Delta, Ref 1)

*4 Omicron BA.1, Ref 2)

*2 NHC: Parent compound of molnupiravir

Acknowledgement

SARS-CoV-2 strains were kindly gifts from National Institute of Infectious Diseases (NIID) This work was supported by the Japan Agency for Medical Research and Development (AMED) under grant numbers JP21fk0108584 and JP22.

Reference

1) M. Sasaki et al, *Sci Transl Med*. 2023; 15 (679), eabq4064 2) T. Kuroda et al, J Antimicrob Chemother. 2023, 78 (4), 946-952.

LLOQ: Lower limit of quantification