In Vitro Resistance Profiling of S-892216, a Second Generation SARS-CoV-2 3CLpro Inhibitor for the Treatment of COVID-19

Sho Kawashima¹, Haruaki Nobori¹, Miyako Okane², Takashi Hashimoto², Kae Inoue², Yuko Yamano², Keiko Funabiki², Michie Watanabe², Kaoru Baba², Keita Fukao¹, Teruhisa Kato¹

1 Shionogi & Co., Ltd., Osaka, Japan

2 Shionogi TechnoAdvance Research, Co., Ltd., Osaka, Japan

Contact Sho Kawashima 3-1-1, Futabacho, Toyonaka, Osaka, 561-0825, Japan TEL: +81-70-7812-7404 E-mail: sho.kawashima@shionogi.co.jp

Background and Purpose

S-892216 is a candidate for the treatment of COVID-19 that has 3CL^{pro} inhibitory activity and antiviral activity. In this study, in vitro selection of SARS- sars-cov-2 Omicron CoV-2 with reduced susceptibility to S-892216 was conducted. Additionally, the antiviral activity of S-892216 was evaluated against SARS-CoV-2 with 3CL^{pro} substitution associated with reduced susceptibility to other 3CL^{pro} inhibitors, ensitrelyir and nirmatrelyir.

Methods

For the selection of SARS-CoV-2 with reduced susceptibility to S-892216 in (hCoV-19/Japan/TY41-702/2022) were cultured in the presence of S-892216 and passaged 10 times. Genotyping analysis of 3CL^{pro} and its cleavage sites in the isolated SARS-CoV-2 were then conducted. The antiviral activity of S-892216, ensitrelyir, and nirmatrelvir against the isolated and reverse genetics-derived SARS-CoV-2 (rgSARS-CoV-2) were assessed. rgSARS-CoV-2 with 3CL^{pro} substitutions including M49L and E166V were generated using circular polymerase extension reaction (CPER) system. The antiviral activity of S-892216 was assessed using rgSARS-CoV-2 infected VeroE6/TMPRSS2 cells.

Figure 1 S-892216 in vitro virus passage study

vitro, VeroE6/TMPRSS2 cells infected Table 1 The genotyping and susceptibility testing results of isolated SARS-CoV-2 with SARS-CoV-2 Omicron BE.1/BA.5- derived from S-892216 in vitro virus passage study

S-892216 (nmol/L)		Amino Acid Substitution		FC (vs EC ₅₀ of control virus)		-
Passage 1 – 5	Passage 6 - 10	3CL ^{pro}	Cleavage sites	S-892216	Nirmatrelvir	3
0	0	-	-	1.00	1.00	
5.56	5.56	P252L L50F+P252L	-	3.51 - 3.84 4.80	1.18 - 1.56 1.52	_
5.56	16.7	L50F+P252L	-	7.04 – 10.2	2.61 - 3.25	
16.7	16.7	M49K+P252L D48E+L50F+P252L M49K+N221K+P252L	_	23.7 10.0 28.7	0.812 2.46 2.16	
16.7	50.0	M49K+P252L D48E+L50F+P252L	_	22.4 - 28.7 10.5	0.736 - 0.861 2.66	1
50.0	50.0	NT*1	NT*1	NT*1	NT*1	_

^{*1} Genotyping and susceptibility testing were not conducted because the virus titers were too low to conduct these tests. NT: Not tested, FC: Fold change

Table 2 Fold change of S-892216, ensitrelvir, and nirmatrelvir against rgSARS-CoV-2 with 3CL^{pro} substitutions S-892216 in vitro virus passage study

	FC (vs EC ₅₀ of wild type)				
	S-892216	Ensitrelvir	Nirmatrelvir		
D48E	2.12	1.25	1.08		
M49R*1	13.7	2.19	0.820		
M49K	3.66	1.57	0.389		
L50F	1.51	1.18	1.34		
N221K	1.76	1.30	1.19		
P252L	1.22	1.08	1.15		
M49K+P252L	4.24	1.46	0.457		
L50F+P252L	3.25	1.58	2.02		
D48E+L50F+P252L	5.82	2.01	2.35		
M49K+N221K+P252L	5.18	1.60	0.630		

Table 3 Fold change of S-892216, ensitrelvir, and nirmatrelvir SARS-CoV-2 variants become relevant in the clinical setting. against rgSARS-CoV-2 with 3CL^{pro} substitutions associated with ensitrelvir and nirmatrelvir reduced susceptibility

	FC (vs EC ₅₀ of wild type)				
	S-892216	Ensitrelvir	Nirmatrelvir		
T21I	1.67	1.11	1.82		
D48G	1.50	4.92	1.45		
M49L	0.420	33.0	0.833		
P52S	0.384	4.41	0.648		
S144A	0.697	8.24	1.40		
M49L+S144A	0.661	124	1.63		
T21I+E166V	0.276	2.76	36.0		
L50F+E166V	0.405	2.81	43.4		

Fold change (FC) values of ensitrelyir and nirmatrelyir against the rgSARS-CoV-2 with isolated 3CL^{pro} substitutions were 1.08- to 2.01- fold for ensitrelyir and 0.630- to 2.35- for nirmatrelvir. The FC values of each compound against the isolated SARS-CoV-2 were 3.51- to 28.7-fold for S-892216 and 0.736- to 3.25- fold for nirmatrelvir.

The FC values of S-892216 against rgSARS-CoV-2 with 3CLpro substitutions M49L and E166V were < 2-fold. SARS-CoV-2 with 3CL^{pro} substitutions of D48E, M49K, L50F, N221K, and P252L were isolated from the in vitro virus selection.

Conclusions

The isolated SARS-CoV-2- strains with reduced susceptibility to S-892216 carried 3CL^{pro} mutation - indicating that the target is 3CL^{pro}, did not show cross-resistance to ensitrely and nirmatrelvir. Furthermore, S-892216 did not show crossresistance against nirmatrelvir and ensitrelvir-reduced susceptibility strains. These data suggest S-892216 might be rgSARS-CoV-2 with M49R was constructed because lysine is also belonged to basic amino acid. effective if described ensitrelvir- and nirmatrelvir-resistant

Acknowledgement

SARS-CoV-2 strains were kindly gifts from National Institute of Infectious Diseases (NIID). SARS-CoV-2 CPER method was kind transferred from Prof. Matsuura, Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University¹⁾.This work was supported by the Japan Agency for Medical Research and Development (AMED) under Grant Numbers JP21fk0108584 and JP22fk0108522.

COI disclosure

Authors are employees of Shionogi & Co., Ltd. or Shionogi TechnoAdvance Research, Co., Ltd. Some authors are shareholder of Shionogi & Co., Ltd.

Reference

1) S Torii et al., *Cell Rep.* 2021; 35(3):109014.