35th ESCMID Global 2025 Vienna, Austria 11–15 April, 2025

Activity of Cefiderocol Against Enterobacterales Carrying Multiple Carbapenemases, Collected as Part of the SENTRY Antimicrobial Surveillance Program

Jason J. Bryowsky¹, Sean T. Nguyen¹, Boudewijn L.M. DeJonge¹, Christopher Longshaw², Joshua M. Maher³, Rodrigo E. Mendes³, Hidenori Yamashiro⁴, and Yoshinori Yamano⁴

¹Shionogi Inc., Florham Park, New Jersey, USA; ²Shionogi BV, London, UK; ³Element Iowa City, North Liberty, Iowa, USA; ⁴Shionogi & Co., Ltd., Osaka, Japan

Contact: Jason J. Bryowsky
Email: jason.bryowsky@shionogi.com

BACKGROUND

- Carbapenemases are major determinants of resistance to carbapenems and other β-lactam antibiotics in Enterobacterales.
- They can be categorized as metallo- β -lactamases (MBLs; NDM, IMP, and VIM enzymes) or serine-based β -lactamases (KPC, OXA-48-like, and certain GES enzymes).
- Cefiderocol is a siderophore-conjugated cephalosporin with remarkable stability against β-lactamases, including all classes of carbapenemases, and it leverages the iron-uptake systems of bacteria to facilitate transportation into the cell.

OBJECTIVE

• The objective of this study was to elucidate the *in vitro* activity of cefiderocol and comparator agents against contemporary Enterobacterales isolates carrying multiple carbapenemases.

METHODS

- Isolates were collected from 2020 to 2023 in Europe and the USA as part of the SENTRY antimicrobial surveillance program.
- Minimum inhibitory concentrations (MICs) were determined according to Clinical and Laboratory Standards Institute (CLSI) methods using broth microdilution with cation-adjusted Mueller–Hinton broth (CAMHB) for comparator agents and iron-depleted CAMHB for cefiderocol.
- Isolates non-susceptible to meropenem or imipenem (excluding *Proteus mirabilis, P. penneri*, and indole-positive Proteaea) or extended-spectrum β -lactamase phenotypes were subject to whole-genome sequencing to determine β -lactamase content.
- Susceptibility was assessed according to 2024 European
 Committee on Antimicrobial Susceptibility Testing (EUCAST),
 CLSI, and US Food and Drug Administration (FDA) breakpoints.

RESULTS

- Of the 32,053 Enterobacterales collected, 82 (0.3%) carried multiple carbapenemase genes, the majority of which were found in *Klebsiella pneumoniae* (**Figure 1**).
- All isolates carried two carbapenemases, except for one
 K. pneumoniae isolate, which carried two MBLs (NDM-1, NDM-4) and an OXA-48-like enzyme.
 - The combination of MBL and OXA-48-like enzymes was the most frequently encountered, followed by combinations of MBL and KPC enzymes (**Table 1**).
- Cefiderocol showed good activity against isolates expressing multiple carbapenemases, with 63.4% and 81.7% of the isolates being susceptible according to EUCAST and CLSI/FDA breakpoints, respectively (**Table 2**).
 - Among MBL-producing isolates (n=78), cefiderocol displayed highest activity against VIM-producing isolates (n=18), with 88.9% and 94.4% of the isolates being susceptible according to EUCAST and CLSI/FDA breakpoints, respectively (**Table 1**).
- β-lactam–β-lactamase inhibitor combinations showed low susceptibility against isolates expressing multiple carbapenemases, suggesting a lack of cross resistance with cefiderocol (Table 2).
- Other comparator agents, with the exception of tigecycline (92.7% at the FDA breakpoint), also demonstrated limited activity for these resistant isolates (**Table 2**).

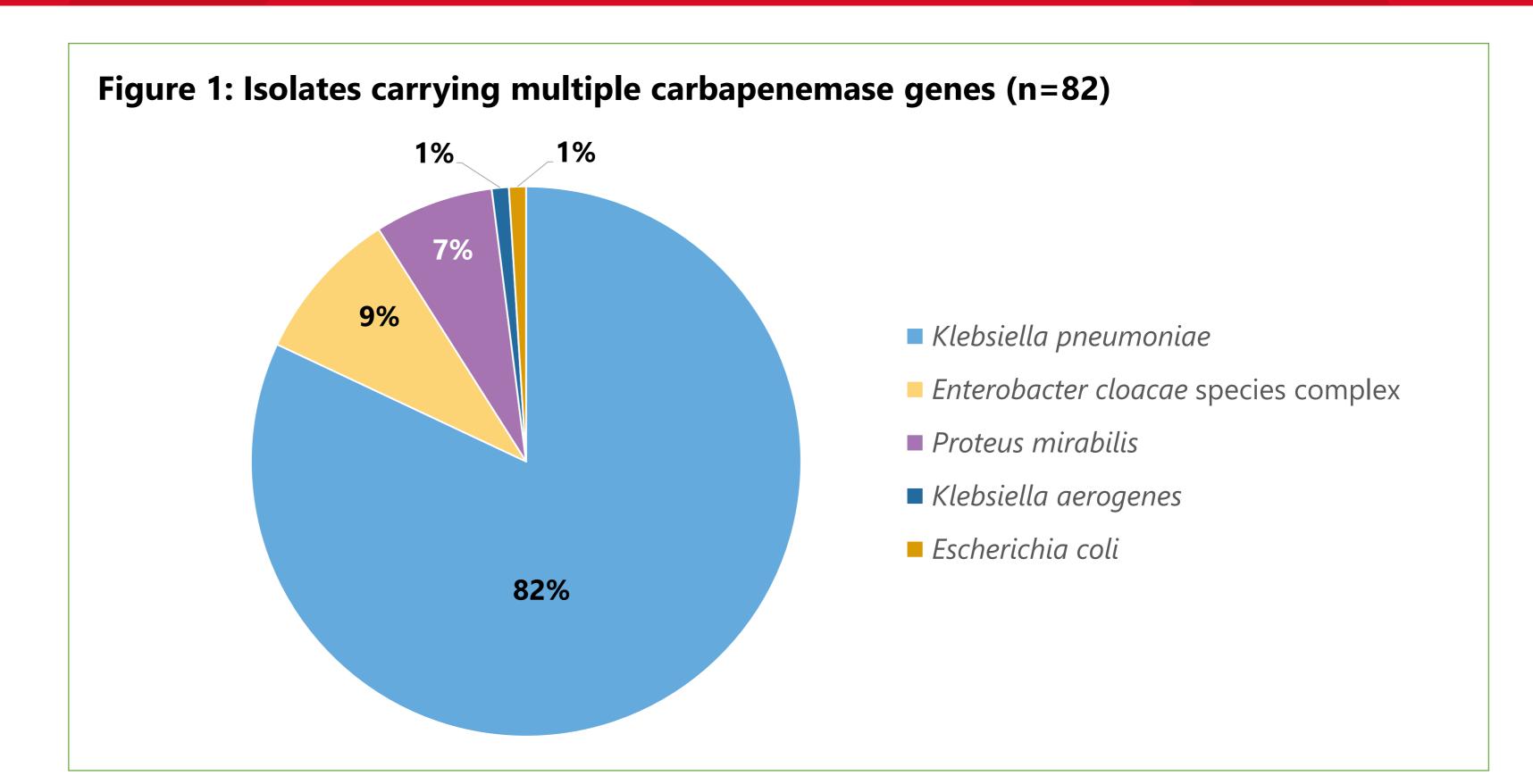


Table 1: Cefiderocol MIC frequency distribution for isolates with multiple carbapenemases (n=82)

Carbapenemase	MIC (μg/mL)											
combinations	0.03	0.06	0.12	0.25	0.5	1	2	4	8	16	32	Total
MBL + OXA-48-like	0	0	1	2	0	2	22	13	9	2	1	52
NDM-1, OXA-48						2	11	11	5	2	1	32
NDM-5, OXA-48				1			6					7
NDM-1, OXA-181				1			1		3			5
NDM-1, OXA-232			1				1	1	1			4
VIM-1, OXA-48							2					2
NDM-5, OXA-181								1				1
NDM-1, NDM-4,							1					1
OXA-232 KPN							1					'
MBL + KPC	0	0	1	0	6	0	8	2	2	1	0	20
NDM-1, KPC-2							5	1				6
VIM-1, KPC-2			1		3		1		1			6
VIM-1, KPC-3					3			1				4
NDM-1, KPC-3							2		1			3
NDM-5, KPC-65										1		1
MBL + MBL	1	2	0	1	1	0	0	0	0	0	0	5
VIM-4, VIM-75		2		1	1							4
VIM-1, VIM-75	1											1
KPC + OXA-48-like	0	1	1	2	0	0	0	0	0	0	0	4
KPC-2, OXA-48		1	1	2								4
MBL + GES	0	0	0	0	0	1	0	0	0	0	0	1
VIM-1, GES-6						1						1

Table 2: Activity of cefiderocol and comparator agents against Enterobacterales carrying multiple carbapenemases (n=82)

Agent*	MIC ₅₀ (µg/mL)	MIC ₉₀ (μg/mL)	MIC range (μg/mL)	% Susceptibility			
				CLSI	EUCAST	FDA	
Cefiderocol	2	8	0.03 to 32	81.7	63.4	81.7	
Imipenem-relebactam	>8	>8	0.5 to >8	3.7	6.1	3.7	
Meropenem-vaborbactam	>8	>8	0.25 to >8	13.4	17.1	13.4	
Ceftazidime-avibactam	>32	>32	0.5 to > 32	6.1	6.1	6.1	
Ceftolozane-tazobactam	>16	>16	8 to >16	0.0	0.0	0.0	
Aztreonam	>16	>16	0.12 to >16	20.7	12.2	20.7	
Ciprofloxacin	>4	>4	0.5 to >4	0.0	0.0	0.0	
Levofloxacin	32	>32	0.5 to > 32	1.2	1.2	1.2	
Amikacin	>32	>32	2 to >32	18.3	19.5	37.8	
Gentamicin	>16	>16	0.25 to >16	17.1	17.1	18.3	
Trimethoprim-sulfamethoxazole	>4	>4	0.25 to >4	22.0	22.0	22.0	
Tigecycline	0.5	2	0.12 to 8			92.7	
Minocycline	4	32	0.5 to >32	69.5		69.5	
Colistin	0.25	>8	0.12 to >8		57.3		

^{*}Susceptibility to cephalosporins, carbapenems, and piperacillin-tazobactam were all <10%.

CONCLUSIONS

- Cefiderocol showed good in vitro activity against
 Enterobacterales carrying multiple carbapenemases that are often multidrug resistant.
- No correlation between MIC value and carbapenemase content was observed, suggesting that other additional factors play a role in cefiderocol susceptibility.
- Cefiderocol should be considered as a treatment option when Enterobacterales isolates carrying multiple carbapenemases are encountered.

Acknowledgments

This research was funded by Shionogi. JJB, STN, BLMD, CL, HY, YY are employees of the SHIONOGI Group. Editorial support was provided by Highfield, Oxford, UK; this support was funded by Shionogi & Co., Ltd., Osaka, Japan.

